1600=(2x)^2+(3x)^2

Simple and best practice solution for 1600=(2x)^2+(3x)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1600=(2x)^2+(3x)^2 equation:



1600=(2x)^2+(3x)^2
We move all terms to the left:
1600-((2x)^2+(3x)^2)=0
We get rid of parentheses
-2x^2-3x^2+1600=0
We add all the numbers together, and all the variables
-5x^2+1600=0
a = -5; b = 0; c = +1600;
Δ = b2-4ac
Δ = 02-4·(-5)·1600
Δ = 32000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32000}=\sqrt{6400*5}=\sqrt{6400}*\sqrt{5}=80\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{5}}{2*-5}=\frac{0-80\sqrt{5}}{-10} =-\frac{80\sqrt{5}}{-10} =-\frac{8\sqrt{5}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{5}}{2*-5}=\frac{0+80\sqrt{5}}{-10} =\frac{80\sqrt{5}}{-10} =\frac{8\sqrt{5}}{-1} $

See similar equations:

| -u/6=-27 | | 1050*7*x=3000 | | y=0.8(-3)-2.1 | | 4^(3x+4)=16,384 | | 42x-13-59x=9+3x-114 | | 3+5n=5(n+2)7 | | 2x-(3+x)-1=-2 | | 21=28m | | 4(2x=1)+3(2x+5) | | 53,4-11x=4x-38 | | 7-2x+4=21 | | C=(4t+8)/t | | 3000=1050*x*7 | | 11/x=3.5 | | 0,6x-1,4=1,3x+9,6 | | -x+16+4x=11-2x | | 10v=1,000,000,000 | | (3x+39)=90 | | 5/9v-1/3=2/3v+13 | | 2r=5r+6 | | 420(6/180)=x | | 52-5x=12-9 | | 2a+(a+10)+54=180 | | (3x-9)=27 | | 0.0313x+x=138.37 | | (3x+25)=55 | | 6{n+4)=-18 | | 5x+10=2(x-10) | | 1/2x+1=1/4x-6 | | m^2-24/m=32 | | 4(n/3+5)=40 | | 2x+7x=150 |

Equations solver categories